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Abstract

Exponential splines (E-splines), finite support splines that can reproduce real or complex
exponentials, can be used as sampling kernels to sample 1-D signals with finite rate of
innovation (FRI). Furthermore, unlike polynomial reproducing kernels, E-splines kernels
can be used to sample 1-D FRI signals in a truly symmetric, multichannel sampling scenario
where the sampling process is separated between the different sensors. However, E-splines
have not been considered in single and multichannel sampling of multidimensional FRI
signals.We present our novel sampling algorithms for single and multichannel sampling of
stream of 2-D Diracs and bilevel polygons using E-splines. For the multichannel sampling
case, we consider a bank of E-spline filters to acquire a 2-D signal, where each filter has
access to a delayed version of the input signal. It will be shown that, by registering the delay
parameters from the relevant features of the signal samples, it is possible to synchronize
the different channels exactly so that perfect reconstruction of the original signal and its
delayed versions is achieved.
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Chapter 1

Introduction

1.1 Background, Problem Statement and Related Work

Sampling theory plays a fundamental role in modern signal processing and communications.
In 1949 Shannon published the famous sampling theorem that states, any bandlimited
signal can be sampled and perfectly reconstructed if the sampling rate is chosen at a rate
equal to or greater than twice the maximum bandwidth of the signal. This theorem is
mostly known as Shannon’s sampling theorem and was published by Shannon in 1949
in his famous paper “Communication in the presence of noise”. One of the drawbacks
of this theorem is that the input signal must be bandlimited and real world signals are
never exactly bandlimited. Recently, it was shown [1, 2] that it is possible to sample
and perfectly reconstruct some classes of non-bandlimited signals. Signals that can be
reconstructed using this framework are called signals with Finite Rate of Innovation (FRI)
as they can be completely defined by a finite number of parameters. Stream of weighted
Diracs and piecewise polynomial signals are some examples of FRI signals.

The results of [1, 2] apply to one dimensional FRI signals only. More recently, the
extensions to the multidimensional case were considered by Maravic [20] and Shukla [13]
where, Maravic et al. [20] considered sampling theorems for some 2-D FRI signals, such
as 2-D stream of Diracs and bilevel polygons using the Sinc and Gaussian sampling ker-
nels, while Shukla et al. [13] proposed algorithms, from the theory of complex moments,
for sampling 2-D stream of Diracs and bilevel polygons with the use of B-splines as the
sampling kernel (a polynomial reproducing kernel).

Dragotti et al. [2] showed that, exponential splines [3] (E-splines), another important
family of kernels, can be used as the sampling kernel to sample 1-D FRI signals. Moreover,
Baboulaz [11] showed in his paper that, unlike the polynomial reproducing kernels, expo-
nential spline sampling kernels can be employed in a fully symmetric multichannel sampling
environment. In [11] it is shown that, with the use of E-splines, it is possible to sample
and perfectly reconstruct one dimensional FRI signals (1-D Diracs) in a fully symmet-
ric, noiseless, multichannel sampling environment. Thus far, exponential splines, splines
that can reproduce real or complex exponentials, have not been considered in sampling
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multidimensional signals. Moreover, E-splines have not been considered in the scenario of
symmetric, multichannel sampling of multidimensional FRI signal.

In our research work, our first objective is to extend the use of E-splines to the sam-
pling of multidimensional FRI signals. Then we want to investigate the use of E-spline
sampling kernels for the case of multichannel sampling of multidimensional FRI signals.
Multichannel sampling framework is used in many modern applications such as image
super-resolution in multi-camera systems [23, 24, 25] and in interleaved A/D converters
and we want to see if E-splines, as the sampling kernels, have the potential to be used
in such contexts. Our research work is mainly concerned with investigating the advan-
tages and capabilities of exponential splines over the current methods used for single and
multichannel sampling of multidimensional FRI signals.

1.2 Original Contribution

Over the last year, our contribution to the field of sampling multidimensional FRI signals
with the use of E-spline sampling kernels, led to the submission of a paper with the title
“A Sampling Theorem For Bilevel Polygons Using E-Splines”, which is going to appear on
the “8th IMA Conference on Mathematics in Signal Processing”.

1.3 Organization of the Report

The outline of the report is as follows: In Chapter II, we will look at some preliminaries
and background needed for sampling signals with finite rate of innovation, where we go
through the sampling setup, different classes of finite support kernels, and also a general
overview on the reconstruction algorithms. In Chapter III, we present our novel sampling
theorems for the reconstruction of 2-D Diracs and also bilevel polygons using exponential
splines. In Chapter IV we present our novel sampling theorems for the reconstruction of
2-D Diracs and bilevel polygons in a symmetric multichannel scenario using exponential
splines as the sampling kernels. A discussion on the problems we have had and also a future
research plan over the next coming year will be discussed in Chapter V. In the Appendix,
it is shown how a modified version of the ACMP method (a method used for retrieving
unknown parameters such as phase, amplitude and frequency from the frequency content
of a signal; detailed description of the method is explained in Chapter III) can be used for
information retrieval, such as amplitude and frequency, from different data models other
than the standard data model used for harmonic data retrieval methods.
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Chapter 2

Sampling Frameworks for Signals
with Finite Rate of Innovation

2.1 Introduction

We all know that bandlimited signals can be sampled and reconstructed perfectly with
Shannon’s famous sampling theorem. As mentioned in the previous chapter, recently
Vetterli et al. [1] showed that it is possible to sample and perfectly reconstruct non-
bandlimited signals with FRI, such as stream of Diracs, nonuniform splines and piecewise
polynomials. The reconstruction of 1-D FRI signals is based on the annihilating filter
method (also known as Prony’s method), a tool widely used in spectral estimation [18] and
error-correction coding [19]. The sampling kernels considered in [1], that is the sinc and
the Gaussian kernels, have an infinite support and are therefore not physically realizable.
Moreover, the use of such kernels make the reconstruction algorithm complex and unstable.
Dragotti et al. [2] showed that many 1-D FRI signals with local finite rate of innovation
can be sampled and reconstructed using a wide range of sampling kernels that have finite
support. Such kernels have the property of reproducing polynomials or exponentials and
deliver practical implementation of the same sampling and retrieval techniques used in [1]
for 1-D FRI signals. In the next section we will go through the sampling setup used for 1-D
FRI signals, the definition of 1-D FRI signals, different classes of finite support sampling
kernels and two examples for the reconstruction algorithms, the annihilating filter method
[1, 2] and the standard subspace harmonic retrieval method [18].

2.2 Sampling Setup

Figure 2.1 shows the sampling setup for 1-D FRI signals where g(x) represents the input
1-D FRI signal, h(x) the impulse response of the acquisition device, φ(x) a rescaled and
time-reversed version of h(x) (also known as the sampling kernel), gs(x) the sampled
version of the input signal g(x), sk the samples and T is the sampling interval. The box
C/D (continuous-to-discrete) reads out the sample values sk from gs(x). Using the setup
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Figure 2.1: 1-D FRI sampling setup

shown in Figure 2.1, the samples sk are given by:

sk = g(x) ∗ h(x)|x=kT (2.1)

=
∫ ∞

−∞
g(x) φ(

x

T
− k) dx (2.2)

= 〈g(x), φ(
x

T
− k)〉. (2.3)

We want to see under what conditions we can achieve perfect reconstruction of g(x) from
the samples sk. We thus need to define FRI signals, introduce the sampling kernels used
and discuss the reconstruction procedures.

2.2.1 Definition of 1-D Signals with Finite Rate of Innovation

Let us consider a 1-D signal of the form [2]:

g(x) =
N∑
r=0

∑
j∈Z

γj,r φr(x− xj). (2.4)

The degrees of freedom of the signal g(x) are the shifts xj and the coefficients γj,r, assuming
that the set of functions φr(x) are known. If we introduce a counting function Cg(xa, xb)
which counts the number of free parameters of g(x) over the interval τ = [xa, xb], then the
rate of innovation ρ of the signal g(x) is defined as:

ρ = lim
τ→∞

1
τ
Cg(−τ/2, τ/2). (2.5)

If ρ is finite, then the signal is said to have a finite rate of innovation. It is important to
note that all shift-invariant signals, including bandlimited signals could be defined with the
above definition. The rate of innovation of real-valued bandlimited signals is: ρ = 2×fmax
where fmax is the maximum frequency of the bandlimited signal.

2.2.2 Sampling Kernels

Sampling kernels are characterized by the physical properties of the acquisition device
which are normally specified and cannot be modified. Unlike the classical sampling schemes,
FRI sampling schemes provide a larger choice of kernels that allow perfect reconstruction
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of the input signal. In [2] different classes of finite support kernels are defined. Here, we
explain the two most important ones, polynomial and exponential reproducing kernels (For
simplicity assume T = 1 when not specified).

Polynomial Reproducing Kernels

Any kernel φ(x) that together with its shifted versions can reproduce polynomials of max-
imum degree M is called a polynomial reproducing kernel. That is any kernel satisfying
the following property: ∑

n∈Z
cmn φ(x− n) = xm, (2.6)

for a proper choice of coefficients cmn with m = 0, 1, . . . ,M . Note that the subscript n
represents the shifts index and the superscript m represents the polynomial degree. The
choice of M depends on the local rate of innovation of the signal g(x) and will be discussed
later on. Polynomial reproducing kernels include any function satisfying the so-called
Strang-Fix conditions [34] which states that the kernel φ(x) satisfies equation (2.6) if and
only if its Fourier transform φ̂(ω) satisfies:

φ̂(0) 6= 0 and φ̂(m)(2nπ) = 0 for n 6= 0 and m = 0, 1, . . . ,M, (2.7)

where the superscript (m) stands for the m-th derivative of φ̂(ω). B-splines [29, 30, 31]
and Daubechies scaling functions [32, 33] are examples of kernels satisfying the Strang-Fix
conditions. Furthermore, the coefficients cmn are given by:

cmn =
∫ ∞

−∞
xmφ̃(x− n) dx, (2.8)

where φ̃(x) is chosen to form a dual basis [12] of φ(x), that is 〈φ̃(x− j), φ(x− k)〉 = δj,k.
Since Daubechies scaling functions are orthogonal functions, then: φ̃(x) = φ(x). B-splines
are biorthogonal functions and their dual basis is defined in [35].

Exponential Reproducing Kernels

Any kernel φ(x) that together with its shifted versions can reproduce real or complex
exponentials in the form eαmx with αm = α0 + mλ and m = 0, 1, . . . ,M is called an
exponential reproducing kernel. That is any kernel satisfying the following property:∑

n∈Z
cmn φ(x− n) = eαmx, (2.9)

for a proper choice of coefficients cmn .
The theory of exponential reproducing kernels is quite recent and is based on the notion
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of exponential splines (E-splines) [3]. A function β̂~α(x) with Fourier transform

β̂~α(ω) =
M∏
m=0

1− eαm−jω

jω − αm
, (2.10)

is called E-spline of orderM where ~α = (α0, α1, . . . , αM ). The produced spline has compact
support and can reproduce any exponential in the subspace spanned by (eα0x, eα1x, . . . , eαMx).
Moreover, the values of α0 and λ can be chosen arbitrarily, but too small or too large values
could lead to unstable results for the reproduction of exponentials. E-splines are biorthog-
onal functions and the coefficients cmn can be found using the dual of β̂~α(x).

2.2.3 Reconstruction Algorithms

For most one dimensional FRI signals, the problem of reconstructing g(x) is reduced to the
problem of reconstructing a set of 1-D Diracs. For example, in [1], it is shown that the prob-
lem of reconstructing non-uniform splines can be reduced to the problem of reconstructing
stream of 1-D Diracs. Also, in the case of piecewise polynomials, the reconstruction pro-
cedure is reduced to reconstructing a sum of derivatives of Diracs. For this reason we
concentrate on stream of Diracs only. Let us assume our input signal g(x) consists of K
Diracs, that is:

g(x) =
K∑
k=1

akδ(x− xk). (2.11)

The signal is sampled using the sampling setup shown in Figure 2.1 with a sampling kernel
φ(x). Therefore, as previously stated, the samples sk are given as: sk = 〈g(x), φ(x − k)〉.
In [2], it is shown that such representation of stream of Diracs can be perfectly recon-
structed using polynomial or exponential reproducing kernels. Let us consider the following
weighted sum of the samples:

τm =
∑
k

cmk sk. (2.12)

Substituting the equation for the samples sj,k into the above equation, gives us:

τm = 〈g(x),
∑
k

cmk φ(x− k)〉. (2.13)

The second term in the inner product can be replaced by one of the equations defined in
(2.6) or (2.9) depending on what kernel is being used as the sampling kernel. If polynomial
reproducing kernels are used, then from equation (2.13), the polynomial (or geometric)
moments of the signal are obtained:

τm =
∫ ∞

−∞
g(x) xm dx, (2.14)
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and assuming that our input signal is a set of K 1-D Diracs, we have:

τm =
K−1∑
k=0

ak x
m
k , m = 0, 1, . . . ,M (2.15)

Likewise, for exponential reproducing kernels, the exponential moments of the signal are
obtained, that is:

τm =
∫ ∞

−∞
g(x) eαmx dx (2.16)

=
K−1∑
k=0

ak e
αmxk , m = 0, 1, . . . ,M (2.17)

=
K−1∑
k=0

ãk u
m
k , where ãk = ake

α0xk and uk = eλxk . (2.18)

Therefore for both cases the given expressions can be expressed as a power-sum series in
the form:

τm =
K∑
k=0

ak u
m
k , m = 1, 2, . . . ,M. (2.19)

In 1795 Prony showed that the unknown parameters ak and uk can be exactly recovered,
provided that the number of measurements of τm is at least 2K. Subspace harmonic
retrieval methods could also be used to recover the amplitudes and the locations of the
Diracs from the measurements τm. Both methods, that is the annihilating filter method
and the matrix pencil method (a subspace harmonic retrieval method) will be explained
in the next section.

Annihilating Filter Method

Let us define a filter hm with m = 0, 1, . . . ,K, such that the locations uk are the roots of
the filter. The z-transform of such a filter is:

H(z) =
K∑
m=0

hmz
−m =

K−1∏
k=0

(1− ukz
−1). (2.20)
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The observed signal τm convolved with the filter defined above, results in:

hm ∗ τm =
K∑
i=0

hi τm−i

=
K∑
i=0

K−1∑
k=0

ak hi u
m−i
k

=
K−1∑
k=0

ak u
m
k

K∑
i=0

hi u
−i
k︸ ︷︷ ︸

=0

,

The under-braced term in the set of equations above equals to zero, as H(uk) = 0, thus:

hm ∗ τm = 0. (2.21)

The filter H(z) is called the annihilating filter as it annihilates the observed signal τm. The
zeros of such a filter uniquely define the distinct locations uk. Moreover, the convolution
equation can be written in the matrix form as follows:

τK τK−1 · · · τ0

τK+1 τK · · · τ1
...

...
. . .

...
τN τN−1 · · · τN−K

×

h(0)
h(1)

...
h(K)

 = 0,

where N ≥ 2K − 1 as at least 2K consecutive values of τm are required in order to solve
the matrix equation shown above. The above expression indicates that the matrix is rank
deficient, but since h(0) = 1, it can be written as a system of Yule-Walker equations:

τK−1 τK−2 · · · τ0

τK τK−1 · · · τ1
...

...
. . .

...
τN−1 τN−2 · · · τN−K

×

h(1)
h(2)

...
h(K)

 = −


τK

τK+1

...
τN

 ,

where by taking the inverse of the first matrix we can solve for the coefficients hm. Given
the filter coefficients, the locations of the Diracs are found by taking the roots of the filter.
The system of equations above gives a unique solution for uk since the filter coefficients
hm are unique for a given signal (if there are multiple poles, for example uk−1 = uk, then
the most-left matrix above will be rank deficient and the filter coefficients hm will not
be unique). After finding the locations uk, we are able to find the weights ak from the
power-series formula given in equation (2.19). By expanding the equation and writing it
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in the matrix form, we obtain:

1 1 · · · 1
u0 u1 · · · uK−1

u2
0 u2

1 · · · u2
K−1

...
...

. . .
...

uK−1
0 uK−1

1 · · · uK−1
K−1


×


α0

α1

...
αK−1

 =


τ0

τ1
...

τK−1

 .

The above system of equations is a Vandermonde system and leads to a unique solution
for the amplitudes ak since the uk are distinct.

Matrix Pencil Method

The field of harmonic retrieval problem, which is related to estimating frequency contents
of a signal, has a vast range of applications in signal processing. Although there are many
harmonic retrieval methods available, most of them suffer from resolution inaccuracy and
large amount of computational burden. Subspace harmonic retrieval methods are generally
more efficient than the classical methods [18, 39, 40]. The well-known methods such as
ESPRIT [37] (Estimation of Signal Parameters via Rotational Invariance Techniques) and
MUSIC [38] (MULtiple Signal Classification) are examples of subspace harmonic retrieval
methods for one dimensional signals where matrix decomposition techniques are used to
estimate unknown parameters such as amplitude, phase and frequency. In this section
we will explain the standard 1-D subspace harmonic retrieval method, the matrix pencil
method, which makes the use of Hankel matrices, singular-value-decomposition and Eigen-
value-decomposition.

Like before, let us consider that we have access to the measurements τm, which consists
of a sum of K polynomials or exponentials (real or complex) with unknown locations uk
and amplitude ak. Then we arrange the data points into a Hankel matrix H of dimension
L×M as follows:

HL×M =


τ0 τ1 . . . τM−1

τ1 τ2 . . . τM
...

...
. . .

...
τL−1 τL−2 . . . τN−1

 ,
where L ≥ K + 1, M ≥ K and N ≥ 2K − 1, therefore, as for the annihilating filter
method, the number of measurements of τm should be at least 2K. The matrix H, with
the arrangement shown, is a product of three matrices: S, A and T where S and T are
Vandermonde matrices of the poles uk and A is a diagonal matrix containing the amplitudes
ak. More precisely, the Hankel matrix H can be written as:

H = SAT T , (2.22)
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with the decomposition illustrated as follows:

H =


1 1 . . . 1
u1 u2 . . . uK
...

...
. . .

...
uL−1

1 uL−1
2 . . . uL−1

K



a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . aK




1 1 . . . 1
u1 u2 . . . uK
...

...
. . .

...
uM−1 uM−1

2 . . . uM−1
K


T

.

The Singular-Value-Decomposition (SVD) decomposes a matrix into a product of three
matrices: U , Σ and V where UH .U = I, V H .V = I and Σ is a diagonal matrix containing
the singular values. Here, the superscript H stands for the Hermitian transpose. If we
take the SVD of the described Hankel matrix H, we obtain:

HL×M = UL×LΣL×MV
H
M×M . (2.23)

In order to obtain the signal subspace, only the product of the first K columns of the
matrices U and V , and also the K×K upper left matrix of Σ are taken into account, that
is:

H = [UK . . .]

[
ΣK . . .

. . . . . .

]
[VK . . .]H ⇒ UKΣKV

H
K .

Thus, the resulting matrix is a truncated version of the original matrix H:

HK = UKΣKV
H
K . (2.24)

Since the matrices S and UK span the same column space, the following important rela-
tionship holds true:

UK = S.Q, (2.25)

where Q is a non-singular matrix of dimension K ×K. We mentioned that the matrices S
and T have a Vandermonde structure. Vandermonde matrices satisfy the “shift-invariant”
subspace property which states that if S and S denote the matrix S after omission of the
first and the last row respectively then the following relationship is valid:

S = S.Φ, (2.26)

where Φ = diag{u1, u2, . . . , uK}. Knowing that UK = S.Q, we clearly have (true for any
matrix multiplication):

UK = S.Q (2.27)

UK = S.Q (2.28)

= S.Φ.Q. (2.29)

12



Now let us consider the matrix pencil (UK , UK) as follows:

UK − λUK = S(Φ− λI)Q, (2.30)

where λ is called the rank reducing number. We can solve for Φs by finding the Eigen-values
of the matrix pencil. The problem of finding the Eigen-values of a matrix pencil is called
the “Generalized Eigen-value problem”. Therefore, to obtain the poles uk we construct the
following matrix equation:

UK
−1.UK = Q−1.Φ.Q. (2.31)

Now by taking the Eigen-Value-Decomposition (EVD), we obtain the matrix Φ which is a
diagonal matrix containing all the poles uk:

eig(UK−1.UK) = eig(Q−1.Φ.Q) = Φ. (2.32)

Moreover, since we have found the exact values of the poles uk, we can now construct the
matrices S and T to obtain the amplitudes ak, using the following equation:

A = (S†).H.(T T )†, (2.33)

where the dagger (†) sign stands for pseudo-inverse of the matrix. It is important to
mention that in the case of having multiple poles, for example uk−1 = uk, the matrices S
and T are rank deficient and the harmonic retrieval method is unable to find the poles uk.

2.3 Multidimensional Sampling Framework

The problem of sampling two dimensional signals is more involved and does not allow
direct extension of the 1-D results. Figure 2.2 shows the sampling setup used for sampling
2-D FRI signals. In the figure, g(x, y) represents the input FRI signal, φ(x, y) the sampling
kernel, gs(x, y) the sampled version of the input signal g(x, y), sj,k the samples and Tx,
Ty are the sampling intervals along the horizontal and vertical directions respectively. For

Figure 2.2: 2-D FRI sampling setup
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the sampling setup shown in Figure 2.2, the samples sj,k are given by:

sj,k =
∫ ∞

−∞

∫ ∞

−∞
g(x, y) φ(

x

Tx
− j,

y

Ty
− k) dx dy (2.34)

= 〈g(x, y), φ(
x

Tx
− j,

y

Ty
− k)〉. (2.35)

The definition of 2-D FRI signals is very similar to the 1-D case, that is 2-D signals with
FRI have the following form:

g(x, y) =
N∑
r=0

∑
j∈Z

∑
k∈Z

γj,k,r φr(x− xj , y − yk). (2.36)

The degrees of freedom of the signal g(x, y) are the shifts xj , yk and the coefficients γj,k,r,
assuming that the set of functions φr(x, y) are known. If we introduce a counter which
counts the number of free parameters of the signal g(x, y) over the window of size (τx, τy),
then the rate of innovation of the signal g(x, y) is:

ρ = lim
τx,τy→∞

1
τxτy

Cg

[
(− τx

2 ,
τx
2 ), (− τy

2 ,
τy
2 )
]
. (2.37)

A set of 2-D Diracs, bilevel polygons and classes of algebraic curves (ellipses, cardioids
and lemniscates) are all examples of 2-D signals with finite rate of innovation. Also, as
in the 1-D case, all two dimensional bandlimited signals could be defined with the above
definition.

The sampling kernels that we consider are given by the tensor product of two 1-D
functions, that is: φ(x, y) = φ(x)⊗φ(y). If two functions φ(x) and φ(y) can reproduce the
polynomials xm and yn, then the resulting 2-D kernel can reproduce polynomials along x
and y, that is: ∑

j∈Z

∑
k∈Z

cm,nj,k φ(x− xj , y − yk) = xmyn, (2.38)

for a proper choice of coefficients cm,nj,k with m = 0, 1, . . . ,M and n = 0, 1, . . . , N . 2-D
orthogonal Daubechies scaling functions [32] and 2-D biorthogonal B-splines [29], both
satisfy the above property. Likewise, if φ(x) and φ(y) can reproduce exponentials, then:∑

j∈Z

∑
k∈Z

cm,nj,k φ(x− xj , y − yk) = eαmxeβny, (2.39)

for a proper choice of coefficients cm,nj,k . E-splines [3] are included in the class of kernels
that satisfy the property defined in equation (2.39).

In theory, like the 1-D case, the exponential or the polynomial moments can be used to
retrieve the degrees of freedom of g(x, y), however, the reconstruction of multidimensional
FRI signals is more involved and requires tools such as complex moments [13], Radon
transform [13, 10, 20] and 2-D harmonic retrieval methods [20]. In order to obtain the
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moments from the samples, let us consider τm,n to be:

τm,n =
∑
j

∑
k

cm,nj,k sj,k, (2.40)

where cm,nj,k are the suitable coefficients used in equations (2.38) or (2.39). By expanding
sj,k we have:

τm,n =
∑
j

∑
k

cm,nj,k 〈g(x, y), φ(x− j, y − k)〉 (2.41)

= 〈g(x, y),
∑
j

∑
k

cm,nj,k φ(x− j, y − k)〉, (2.42)

where g(x, y) is a non-zero and integrable function defined in the closed region Ω. Assum-
ing that a polynomial reproducing kernel is used as the sampling kernel φ(x, y), then by
substituting equation (2.38) into the above equation, the 2-D geometric moments of the
signal are obtained:

τm,n = 〈g(x, y), xm yn〉 (2.43)

=
∫ ∞

−∞

∫ ∞

−∞
g(x, y) xm yn dx dy. (2.44)

Likewise, if an exponential reproducing kernel is used as the sampling kernel, then by
substituting equation (2.39), the exponential moments of the signal are obtained:

τm,n = 〈g(x, y), eαmxeβny〉 (2.45)

=
∫ ∞

−∞

∫ ∞

−∞
g(x, y) eαmxeβny dx dy. (2.46)

It is important to note that, in the case of purely imaginary E-splines, the discrete Fourier
coefficients of the signal g(x, y) are obtained from the exponential moments, that is:

τm,n = G[αm, βn], (2.47)

where G(u, v) represents the Fourier transform of the signal g(x, y). We will use this
important fact in the next chapter.
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Chapter 3

Sampling Multidimensional FRI
Signals Using E-Splines

3.1 Introduction

As we have mentioned, E-spline sampling kernels have not been considered yet for the
sampling of multidimensional FRI signals. In this chapter we present our novel algorithms
for sampling and perfectly reconstructing 2-D stream of Diracs and bilevel polygons using
E-spline sampling kernels.

3.2 Sampling and Reconstructing 2-D Diracs Using E-splines

Let us assume that a set of 2-D Diracs is passed through the sampling setup shown in
Figure 2.2 with E-spline being the sampling kernel. As we have illustrated before, the
exponential moments from the samples of a signal are given by:

τm,n =
∫ ∞

−∞

∫ ∞

−∞
g(x, y) eαmxeβny dx dy. (3.1)

Assuming that there are K Diracs in the signal, such a signal can be represented as:

g(x, y) =
K∑
k=1

ak δ(x− xk, y − yk), (3.2)

where ak are the amplitudes and (xk, yk) are the horizontal and vertical coordinates of
the Diracs respectively. Since each Dirac has an amplitude and also a horizontal and
vertical location, the rate of innovation of the signal equals to 3K. Now by substituting
the equation for 2-D Diracs as the input signal g(x, y), we obtain:

τm,n =
K∑
k=1

ak

∫ ∞

−∞

∫ ∞

−∞
δ(x− xk, y − yk) eαmxeβny dx dy , (3.3)

16



which from the theory of integration of Dirac delta functions, leads to:

τm,n =
K∑
k=1

ak e
αmxkeβnyk . (3.4)

The question here is whether we can extend the annihilating filter method to the 2-D case
and apply the post-filtering on the observed measurements τm,n. Unfortunately, as Maravic
points out in her paper [20], the relation τm,n ∗ hm,n = 0, where hm,n is the annihilating
filter, has an infinite number of zeros over the complex field, therefore a simple extension
to the 2-D case is not possible.

One way to tackle this problem is by setting the indices m and n to zero one at time
and applying the annihilating filter method on both sets to find the values of xk and yk

coordinates separately. That is:

τ0,n =
K∑
k=1

ak e
βnyk (3.5)

τm,0 =
K∑
k=1

ak e
αmxk . (3.6)

Unfortunately, the estimated locations have to be paired and this is a combinatorial prob-
lem which may not have a unique solution. Namely, two different pairings may lead to
the same samples sj,k. Moreover, in the case of common coordinates between xk and
yk, the annihilating filter method is unable to find the multiple poles, because of having
non-unique filter coefficients (explained in the previous chapter).

In the case of harmonic retrieval method, a similar approach was recognized by Rao
and Kung [15]. Again, like the above case, their method is only valid for 2-D signals that
have no common frequencies between the xk and yk coordinates and also no matching
technique is described for finding the correct pairings between the estimated coordinates.
MEMP (Matrix Enhancement and Matrix Pencil) by Hua [14], addresses the two issues
mentioned above, where in the case of having common coordinates, Hua solves the rank
deficiency problem by enhancing the original data matrix. In this way, a partitioned and
stacked Hankel matrix of the original data matrix is constructed in a way such that the full-
rank property of the original matrix is restored. For the pairing problem, a combinatorial
approach is suggested, trying all the possible combinations to find the correct pairing which
is highly computational and not efficient.

The ACMP (Algebraically Coupled Matrix Pencils) method by F. Vanpoucke et al
[7] uses a clever way to pair the frequencies by simultaneously solving two algebraically
related generalized eigenvalue equations. As the matrix enhancement approach in [14] is
not compatible with the algebraic pairing technique, they introduce an alternative rank
restoration technique. In the next section we will describe the ACMP method and show
how by the use of that method we are able to find the xk and yk coordinates and also the
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amplitudes ak from the exponential moments obtained from the samples. This method
would also work for polynomial moments. Furthermore, in the Appendix, we present an
extension to the ACMP method for various data models other than the standard data
model used for harmonic retrieval methods [40, 18].

3.2.1 ACMP Method

Let us consider that we have access to the measurements τm,n which consists of a sum of K
exponentials (complex or real) with unknown coordinate pairs xk and yk, and amplitudes
ak. The observed measurements τm,n obtained from sampling K 2-D Diracs with E-spline
sampling kernels, can be rewritten as:

τm,n =
K∑
k=1

ak e
αmxk eβnyk (3.7)

=
K∑
k=1

ak.e
α0xk .eβ0yk eλ1mxkeλ2nyk (3.8)

=
K∑
k=1

âkϕ
m
k ψnk , (3.9)

where âk = ak.e
α0xk .eβ0yk , ϕk = eλ1xk and ψk = eλ2yk . In matrix form, the observed

measurements τm,n can be written as a product of three matrices XM , A and YN , that is

HM×N = XM .A.Y
T
N , (3.10)

where

HM×N =


1 1 . . . 1
ϕ1 ϕ2 . . . ϕK
...

...
. . .

...
ϕM−1

1 ϕM−1
2 . . . ϕM−1

K



â1 0 . . . 0
0 â2 . . . 0
...

...
. . .

...
0 0 . . . âK




1 1 . . . 1
ψ1 ψ2 . . . ψK
...

...
. . .

...
ψN−1

1 ψN−1
2 . . . ψN−1

K

 .

What we have here is very similar to the Hankel matrix defined in the 1-D case but
unfortunately we can not simply extend the 1-D solution to the 2-D case because of the
two following reasons:

1) Rank deficiency of matrix H when there are shared frequencies along the horizontal
and vertical directions.

2) The pairing between the retrieved horizontal and vertical components is also an
issue.

The ACMP approach by F. Vanpoucke et al [7] overcomes the two mentioned problems
very efficiently. To describe the method, we start by solving the second problem first, so
we will assume that there are no common coordinates along the pairs xk and yk. The
matrices XM and YN have a Vandermonde structure. From the shift-invariance property
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of Vandermonde matrices, we have that XM = XM .Φ and YN = YN .Ψ where the matrix
Φ is a diagonal matrix containing all the xk, Ψ is a diagonal matrix containing all the yk,
XM and XM denote the matrix XM after the omission of the first and last row respectively
(same for YN ). From the Vandermonde structure of the matrices and their properties de-
fined above, we obtain the following results for the four sub-matrices Htop−left, Htop−right,
Hbottom−left and Hbottom−right of the Hankel matrix H. The four sub-matrices correspond
to the omission of the first and last rows and columns of the data matrix H:

Htl = H| = X.A.Y T (3.11)

Htr = |H = X.A.Y
T = X.(A.Ψ).Y T (3.12)

Hbl = H| = X.A.Y T = X.(Φ.A).Y T (3.13)

Hbr = |H = X.A.Y
T = X.(Φ.A.Ψ).Y T . (3.14)

We can now construct two matrix pencil equations as follows:

Htr − µ.Htl = X.A.(Ψ− µ.I)Y T (3.15)

Hbl − λ.Htl = X.A.(Φ− λ.I)Y T , (3.16)

where the pairs (λ,µ) are called the rank reducing numbers and are equal to the poles
(ϕk,ψk) we want to estimate. If there are no common coordinates along the horizontal or
vertical directions, then each matrix pencil above would have a rank equal to K. Only if
λ = ϕK and µ = ψK the rank of the matrix would drop to K − 1. We can use the method
described for the one dimensional case to solve for ϕK and ψK separately but we would
have a problem with the pairing of the estimated values. F.Vanpoucke et al [7] came up
with the following algorithm to sort out the problem with the pairing of the estimated
values: First the SVD of Htl is computed as follows:

Htl = U.Σ.V H . (3.17)

By multiplying UH to the left hand side of the first matrix pencil defined in equation
(3.15), and also multiplying V to the right hand side of the same matrix pencil, we obtain:

UH .(Htr − µ.Htl).V = UH .Htr.V − µ.UH .Htl.V (3.18)

= UH .X.A.Ψ.Y T .V − µ.UH .X.A.Y T .V (3.19)

= F.Ψ.G− µ.F.G (3.20)

= Ctr − µ.Ctl, (3.21)

where F = UH .X.A, G = Y T .V , Ctr = F.Ψ.G and Ctl = F.G. Also with the same

19



multiplication on the second matrix pencil (equation (3.16)) we obtain:

UH .(Hbl − λ.Htl).V = UH .Hbl.V − λ.UH .Htl.V (3.22)

= UH .X.A.Φ.Y T .V − λ.UH .X.A.Y T .V (3.23)

= F.Φ.G− λ.F.G (3.24)

= Cbl − λ.Ctl. (3.25)

Now we have constructed two new matrix pencils: Ctr−µ.Ctl and Cbl−λ.Ctl. By applying
Eigen-Value-Decomposition on both matrix pencils, the poles ϕk and ψk are obtained:

eig(C−1
tl .Ctr) = eig(G−1.F−1.F.ψ.G) = eig(G−1.ψ.G) = Ψ. (3.26)

eig(C−1
tl .Cbl) = eig(G−1.F−1.F.ϕ.G) = eig(G−1.ϕ.G) = Φ. (3.27)

The identical transformation G on both equations will guarantee us to have the correct
pairing for the estimated ϕk and ψk values. This algorithm is also very efficient as we need
to calculate the transformation parameter G once from the first matrix pencil, and apply
that to the second matrix pencil. Moreover, as UH .Htl.V = F.G = Ctl = Σ, inverting Ctl,
which is just a diagonal matrix, is not computationally expensive.

The algorithm we just explained will fail if there are multiple frequency pairs with one
coordinate in common because of the rank deficiency of XM and/or YN matrices. As we
mentioned before, Hua [14] constructs an enhanced matrix by partitioning and stacking
the original data matrix such that the enhanced matrix is of rank K. A similar approach is
used in the ACMP method but with a different restoration technique so that the enhanced
matrix will be compatible with the pairing technique. The rank-restoration technique is
as follows:

Consider the matrix H l,k to be:

H(l,k) = Hl:K+l,k:K+k. (3.28)

Also let us define the enhanced matrix J of size K(K + 1)×K(K + 1) to be:

J =


H(1,1) H(2,1) . . . H(K,1)

H(1,2) H(2,2) . . . H(K,2)

...
...

. . .
...

H(1,D) H(2,D) . . . H(K,K)

 .

For the construction of matrix J , we need at least 2K × 2K data points. The described
matrix J has very similar properties to the Hankel matrix H and can be decomposed as
follows:

J = X ′.A.Y ′T , (3.29)
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where
X ′ =

[
XT
K+1 Ψ.XT

K+1 Ψ2.XT
K+1 . . . ΨK−1.XT

K+1

]T
(3.30)

Y ′ =
[
Y T
K+1 Φ.Y T

K+1 Φ2.Y T
K+1 . . . ΦK−1.Y T

K+1

]T
, (3.31)

and

XK+1 =


1 1 . . . 1
ϕ1 ϕ2 . . . ϕK
...

...
. . .

...
ϕK1 ϕK2 . . . ϕKK

 YK+1 =


1 1 . . . 1
ψ1 ψ2 . . . ψK
...

...
. . .

...
ψK1 ψK2 . . . ψKK

 .
The matrices X ′ and Y ′ have a Vandermonde structure and for the coinciding ϕk, the
corresponding ψk will be different and therefore both matrices are full rank if the matrix
J is at least of size K(K + 1) × K(K + 1). Recalling the shift-invariant property for
Vandermonde matrices, we have: X ′ = X ′.Φ and Y ′ = Y ′.Ψ where

X ′ =
[
XT
K+1 Ψ.XT

K+1 Ψ2.XT
K+1 . . . ΨK−1.XT

K+1

]T
. (3.32)

X ′ =
[
XT
K+1 Ψ.XT

K+1 Ψ2.XT
K+1 . . . ΨK−1.XT

K+1

]T
. (3.33)

As we have mentioned before, X and X denote the matrix X after omission of the first and
last row respectively (same for the matrix Y ′). Now we can apply the previous algorithm on
the matrix J , however, the process of omitting rows and columns has to be applied to the
block components of matrix J . Again, due to the Vandermonde structure of matrices Y ′

and X ′, the four sub-matrices Jtop−left, Jtop−right, Jbottom−left and Jbottom−right of matrix
J are constructed, which correspond to the omission of the first and last rows and columns
on each block of the matrix J :

Jtl = X ′.A.Y ′
T (3.34)

Jtr = X ′.A.Y ′
T

= X ′.A.Ψ.Y ′T (3.35)

Jbl = X ′.A.Y ′
T = X ′.Φ.A.Y ′T (3.36)

Jbr = X ′.A.Y ′
T

= X ′.Φ.A.Ψ.Y ′T . (3.37)

From the matrices described above we can obtain two matrix pencils, that is: Jtr − µ.Jtl

and Jbl − λ.Jtl. Now with the use of EVD, we can calculate for ϕk and ψk as explained
previously. Moreover, since we have found the exact values of the poles ϕk and ψk, we can
now construct the matrices X ′ and Y ′ to obtain the parameters âk, using the following
equation:

A = (X ′†).H.(Y ′T )†. (3.38)

From the estimated parameters âk and the poles ϕk and ψk we can easily find the ampli-
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tudes ak:

ak =
eα0xk .eβ0yk

âk
. (3.39)

3.2.2 A Sampling Theorem For Reconstructing 2-D Diracs Using E-
Splines

In the previous section it was shown that by using the ACMP method we can recover
the coordinates xk, yk and the amplitudes ak from exponential moments of 2-D stream of
Diracs obtained from the samples. It was also shown that, for a stream of K 2-D Diracs,
at least 2K × 2K data points are required for the construction of the enhanced matrix.
Therefore we need the 2-D exponential spline order to be at least 2K−1×2K−1 in order
to produce the 2K × 2K exponential moments. Figure 3.1 shows an example, where the
input signal, its corresponding 16× 16 samples and the reconstructed signal are all shown.
We can now summarize the above discussion with the following proposition:

Proposition I - A set of K 2-D Diracs is uniquely determined from the samples
sj,k = 〈g(x, y), φ( x

Tx
− j, yTy

− k)〉 provided that the sampling kernel ϕ(x, y) can reproduce
exponentials with an order 2K − 1× 2K − 1.

3.3 Sampling and Reconstructing Bilevel Polygons Using E-
splines

Consider a non-intersecting, convex and bilevel N -sided polygon with vertices at points
(xi, yi), i = 1, 2, . . . , N , which is sampled with E-spline sampling kernel. The described
polygon can be uniquely specified by its N vertices and therefore it has a rate of innovation
equal to 2N . Sampling and perfectly reconstructing bilevel polygons with E-splines has not
been considered yet and in this section we will present a novel algorithm for reconstructing
bilevel polygons with the use of E-splines. The Fourier transform of bilevel polygons, Radon
transform and projection-slice theorem [17] are all utilized to perfectly reconstruct sampled
bilevel polygons. At first we will show how the Fourier transform of bilevel polygons is
represented.

3.3.1 Fourier Transform of a Polygonal Shape Function

As we have mentioned before, sampling signals with E-splines would result in having the
exponential moments of the input signal, using the equation τm,n =

∑
j

∑
k c

m,n
j,k sj,k.

S.Lee and R.Mittra [6] derived an expression for the Fourier transform of any N -sided
bilevel polygon. To briefly describe their solution, let us assume that Σ is an N -sided
bilevel polygon as shown in Figure 3.2. In the figure, the numbers i = 1, 2, . . . , N represent
the vertices of the polygon, O represents a relative origin and pi represent the gradient of
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(a) (b)

(c)

Figure 3.1: Sampling and reconstructing 2-D Diracs using E-splines (a) The
original input signal consisting of 3 Diracs in a frame size of 256× 256 with lo-
cations (xk,yk) = [(150,160), (100,140), (100,80)] and amplitudes (100,200,300)
respectively. (b) The 16× 16 samples of the original signal (c) The recon-
structed signal with the use of ACMP algorithm with the retrieved locations
(xk,yk) = [(150,160), (100,140), (100,80)] and amplitudes (100,200,300) respec-
tively.

the polygon’s sides. Let us also define the polygon function g(x, y) of Σ as:

g(x, y) =

1 if (x, y) is in Σ

0 otherwise.
(3.40)

From literature we know that the Fourier transform of any 2-D function g(x, y) is
defined as:

G(u, v) =
∫ ∞

−∞

∫ ∞

−∞
g(x, y) ejux ejvy dx dy. (3.41)
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Figure 3.2: N-sided polygon

S.Lee and R.Mittra showed that the Fourier transform of any N-sided bilevel polygon is:

G(u, v) =
N∑
i=1

ej(uxi+vyi)
pi−1 − pi

(u+ pi−1v).(u+ piv)
, (3.42)

where (xi, yi) are the locations of the vertices of the polygon. This result shows that the
Fourier transform of bilevel polygons is directly dependent on the location of the vertices
of the polygons. The reader can refer to [6] for the derivation of this result.

As can be seen from the above equation, the Fourier transform of an N -sided bilevel
polygon, closely follows the data model used for 2-D harmonic retrieval [7] methods (ACMP
method for example). However, since the result for the Fourier transform has a frequency-
varying amplitude, we cannot simply apply 2-D harmonic retrieval methods to find the
locations (xi, yi). Having said that, by setting u and v to zero separately, we will end up
with two equations in power-series form. Therefore we can find the values of xi and the
values of yi separately. Unfortunately, in this way, there will be a problem with the pairing
of xi and yi values. Fortunately, with the use of the connection between the Fourier
transform and Radon transform, also know as the projection-slice theorem [17], we can
efficiently retrieve the locations of the vertices of bilevel polygons. Next, we will give a
brief introduction of the Radon transform and its connection with the Fourier transform.

3.3.2 Introduction to Radon Transform

The Radon transform is used in diverse fields of applications such as computed tomography,
astronomy, optics, geophysics and many other areas [8]. In this section we take advantage
of the connection between the Radon transform and Fourier transform, to sample and
perfectly reconstruct bilevel polygons.

The Radon transform Rg(t, θ) of a two dimensional, continuous, square integrable func-
tion g(x, y) defined in a closed region Ω, is found by integrating g along lines with angle
θ over the x-axis. The projections Rg(t, θ) or the line integrals along each θ ∈ [0, π) will
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result in 1-D functions with finite support. The collection of Rg(t, θ) at all θs is called the
Radon transform of g(x, y), that is:

Rg(t, θ) =
∫ ∞

−∞

∫ ∞

−∞
g(x, y) δ(t− x cos(θ)− y sin(θ)) dx dy (3.43)

There are many methods to reconstruct the original function g(x, y) from the projections

Figure 3.3: Line integrals at an angle θ

[8] but the most popular is the filtered-backprojection algorithm [8].

3.3.3 Projection-Slice Theorem

The input function g(x, y) must be a square integrable function with finite support. An
important result [9] which is derived from the definition of the Radon transform is that if
F (t) is a square-integrable function then the following relation holds true:∫ T

−T
Rg(t, θ) F (t) dt =

∫ ∫
Ω
F (x cos(θ) + y sin(θ)) dx dy, (3.44)

where T is the maximal support value of the closed region Ω in the direction θ. By
considering F (t) = e−jωt, a direct relationship between the 2-D Fourier transform and the
Radon transform is observed. The derivation is as follows: If F (t) = e−jωt then:

F (xcos(θ) + ysin(θ)) = e−jω(x cos(θ)+y sin(θ)), (3.45)
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by taking the 1-D Fourier transform of the Radon transform Rg(t, θ), we obtain:

R̂g(ω, θ) =
∫ ∞

−∞
Rg(t, θ) e−jωt dt (3.46)

=
∫ ∫

Ω

∫ ∞

−∞
g(x, y) e−jωt δ(t− x cos(θ)− y sin(θ)) dx dy dt (3.47)

=
∫ ∫

Ω
g(x, y) e−jωx cos(θ) e−jωy sin(θ) dx dy. (3.48)

Going back to the definition of the Fourier transform of a 2-D function g(x, y) and by
comparing it with the 1-D Fourier transform of the Radon transform of g(x, y), we observe
that:

G(ω cos(θ), ω sin(θ)) = R̂g(ω, θ). (3.49)

What we have shown here is also known as the projection-slice theorem. We can see that
the Fourier transform function G(u, v) evaluated along a line passing through the origin at
an angle θ in Fourier domain, is identical to the one dimensional Fourier transform of the
projection Rg(t, θ), where the projection angle is at the same angle θ. Therefore the Radon
transform is closely related to the Fourier transform. In the next section, we will show how
with the use of the projection-slice theorem we can perfectly retrieve the locations of the
vertices of bilevel polygons.

3.3.4 A Sampling Theorem For Reconstructing Bilevel Polygons Using
E-Splines

In this section we will present a novel algorithm for reconstructing bilevel polygons with
the use of E-splines. To start, let us assume that a bilevel N -sided polygon has been
sampled with E-spline sampling kernel. So the sample sm,n are given by:

sm,n = 〈g(x, y), φ(x−m, y − n〉.

Using equation (2.40) we obtain the exponential moments of the signal from the samples
sm,n:

τm,n =
∫ ∞

−∞

∫ ∞

−∞
g(x, y) eαmxeβny dx dy.

Furthermore, as we mentioned earlier on, the Fourier transform of any polygon can be
written as [6]:

G(u, v) =
N∑
i=1

ej(uxi+vyi)
pi−1 − pi

(u+ pi−1v).(u+ piv)
.
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Therefore, from the equations shown above we can deduce the following:

τm,n = G[m,n] (3.50)

=
N∑
i=1

e(αmxi+βnyi)
pi−1 − pi

(m+ pi−1n).(m+ pin)
, (3.51)

that is, from the exponential moments of the signal we have access to the Fourier coefficients
of the signal. Also, from the projection-slice theorem we know that the Fourier transform
of a 2-D function g(x, y) and the 1-D Fourier transform of the Radon transform of the
same 2-D function are directly related, which in terms of discrete coefficients we have the
following relationship:

G[ω cos(θ), ω sin(θ)] = R̂g[ω, θ], (3.52)

where ω =
√
m2 + n2 and θ = tan−1( nm). By using this mapping, we can transform the

Discrete Fourier transform of bilevel polygons obtained from the samples to the Radon
domain as follows:

τω.cos(θ), ω.sin(θ) =
N∑
i=1

exi.αωcos(θ)+yi.βωsin(θ)
pi−1 − pi

ω2(cos(θ) + pi−1sin(θ)).(cos(θ) + pisin(θ))
,

(3.53)
which, by assuming that ai,θ is pi−1−pi

(cos(θ)+pi−1sin(θ)).(cos(θ)+pisin(θ)) , the equation above can be
simplified to:

τω.cos(θ), ω.sin(θ) × ω2 =
N∑
i=1

ai,θ × exi.αωcos(θ)+yi.βωsin(θ) . (3.54)

Let us introduce τ̂ω,θ = τω.cos(θ),ω.sin(θ) × ω2 to present the new mapped equation. At
ω = 0, τ̂ω,θ = 0, therefore the minimum required spline order can be decreased by 1 as the
first data sample is always zero. The above equation can be rewritten as:

τ̂ω,θ =
N∑
i=1

ai,θ × exi.αωcos(θ)+yi.βωsin(θ) , ω 6= 0. (3.55)

Since θ is fixed for a given projection, i.e. ai,θ = ai, the mapped equation at different
Radon projections has the following form:

τ̂ω,θ =
N∑
i=1

âi.e
ωzi =

N∑
i=1

âi.(ui)ω, (3.56)

where âi = ai.e
α0xi .eβ0yi , zi = xi.cos(θ).λ1+yi.sin(θ).λ2 and ui = ezi . Some examples with
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different θ are given below (derived from the fact that ω =
√
m2 + n2 and θ = tan−1( nm)):

τ̂ω,0 = τm,0 ×m2 =
∑N

i=1 e
xi.αm pi−1−pi

1

τ̂n,π
2

= τ0,n × n2 =
∑N

i=1 e
yi.βn pi−1−pi

pi−1.pi

τ̂ω,π
4

= τm,m × 2m2 =
∑N

i=1 e
xi.αm+yi.βm pi−1−pi

1
2
.(1+pi−1).(1+pi)

.

(3.57)

By using Prony’s method, we can find all the parameters zi for each projection. By back-
projecting the parameters zi according to their θ we are able to retrieve some information
about the polygon’s vertices. The question here is that how many projections will defi-
nitely guarantee us to perfectly reconstruct the polygon? This question was addressed by
Maravic in [10] and she showed that N + 1 projections uniquely specify the locations of
the vertices of the polygons. The same argument can be applied to Diracs as shown in
Figure 3.4. Figure 3.4(a) shows an image with N = 3 Diracs and 3.4(b) shows N + 1 = 4
back-projections at angles 0, 90, 45 and tan−1(2) of the same image. It can be seen that
exactly N + 1 = 4 lines intersect at the locations of the N = 3 Diracs. Thus, points that
have N + 1 line intersections correspond to the N Diracs.

(a) (b)

Figure 3.4: K + 1 projections for K 2-D Diracs completely specifies the signal
(a) g(x,y) containing 3 Diracs (b) 3 + 1 = 4 back-projections

Now let us consider that the input signal is a bilevel triangle. Using the sampling setup
shown in Figure 2.2, the input signal is sampled at a rate T = Tx = Ty with E-splines.
Then, the exponential moments of the signal are calculated using equation (2.40). For
the perfect reconstruction of the polygon, 3 + 1 = 4 projections are required. As the
first data sample is always zero, the number of measurements τ̂ω,θ need to be at least
2N − 1 = 5 for each projection angle θ. To retrieve the zi parameters of each of the first
4 available projections, that is 0, 90, 45 and tan−1(2), we need the spline order to be at
least p(2N − 2)× p(2N − 2). Here, p is the number required in order to produce at least
N +1 projections. The value of p can be found by inspection but it can be shown that the
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order of the spline required is O(N2). For sampling and perfectly reconstructing bilevel
triangles we need the spline order to be at least 8× 8 and for 4-sided bilevel polygons we
need the spline order to be at least 12× 12 (by inspection).

Figure 3.5(a) shows a triangle in a frame size of 256×256. The signal is sampled at a rate
Tx = Ty = 8 using real E-spline of order 8. The projections are taken at the angles 0, 90, 45
and tan−1(2). Using Prony’s method, zi parameters are recovered for each projection,
normalized by

√
(m2 + n2) and then back-projected according to their projection angle.

Figure 3.5(b) shows the reconstructed signal where the crosses are the actual vertices of
the original signal. We can see that our algorithm has perfectly reconstructed the locations
of the vertices of the triangle.

(a) (b)

(c)

Figure 3.5: Sampling and Reconstructing a bilevel triangle using real E-splines
(a) The original bilevel triangle (b) The reconstructed vertices where the
crosses are the actual vertices of the original signal. (c) The 32× 32 samples
of the signal [Not to scale]

To show another example, assume that we have a 4-sided bilevel polygon in a frame
size of 512 × 512 (Figure 3.6(a)). The signal is sampled at a rate Tx = Ty = 16 using
real E-spline of order 12. The projections are taken at the angles 0, 45, 90, tan−1(2) and
tan−1(1

2). Figure 3.6(b) shows the reconstructed signal where the crosses are the actual
vertices of the original signal. As can be seen from the reconstructed image, not all the
back-projected lines align at the vertices points. Instead of using real E-splines we can use
purely imaginary E-splines which make the reconstruction more stable. Figure 3.7 shows
the same image but now sampled with imaginary E-splines. To summarize our results, an
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N -sided bilevel polygon is perfectly reconstructed from the samples sj,k = 〈g(x, y), φ( x
Tx
−

j, yTy
− k)〉 provided that the sampling kernel ϕ(x, y) can reproduce exponentials with an

order p(2N − 2)× p(2N − 2), where p is the number required in order to produce at least
N + 1 projections.

(a) (b)

(c)

Figure 3.6: Sampling and Reconstructing a 4-sided bilevel polygon using real E-
splines (a) The original 4-sided bilevel polygon (b) The reconstructed vertices
where the crosses are the actual vertices of the original signal (c) The 32× 32
samples of the signal [Not to scale]
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(a)

(b)

Figure 3.7: Sampling and Reconstructing a 4-sided bilevel polygon using purely
imaginary E-splines (a) The 32× 32 real (left) and imaginary (right) samples of
the signal shown in Figure 3.6 (b) The reconstructed vertices where the crosses
are the actual vertices of the original signal. [Not to scale]
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Chapter 4

Multichannel Sampling of FRI
Signals with E-Splines

4.1 Introduction

Imagine a multichannel sampling system consisting of many acquisition devices observing
an input signal. In order to perfectly reconstruct the input signal using only one acquisition
device, we normally require expensive acquisition devices with high sampling rates. By
using a bank of acquisition devices (filters) and synchronizing the different channels exactly,
we are able to reduce the number of samples needed from each device, resulting in a cheaper
and more efficient sampling system. To model our multichannel system, consider a bank
filters to acquire FRI signals where each filter has access to a delayed version of the input
signal. Figure 4.1 shows a 1-D model for the described multichannel sampling scenario
where the bank of filters ϕ1(x), ϕ2(x), . . . , ϕN−1(x) receive different delayed versions of
the input signal g0(x). Here, the delays are denoted by T1, T2, . . . , TN−1. Multichannel
sampling aims to have filters of lower order and since less samples are needed from each
sensor, the support of the corresponding sampling kernels are also reduced.

Figure 4.1: 1-D multichannel sampling scenario

Multichannel sampling can be done in two ways, either symmetrically or non-symmetrically.
A symmetric multichannel sampling system, which is of more interest in our research area,
is a sampling setup in which the sampling is evenly distributed between different acquisi-
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tion devices, while for the non-symmetric case, the reference signal is independently sent
for perfect reconstruction and other acquisition devices only send the relevant samples that
are needed to achieve perfect reconstruction. Multichannel sampling of bilevel polygons
with polynomial reproducing kernels, in a non-symmetric manner, have been considered
by Baboulaz [11]. He also looked at the case of multichannel sampling of a stream of 1-D
Diracs using E-splines, which he shows that, unlike the polynomial reproducing kernels,
we can truly distribute the acquisition of FRI signals. In this chapter we will show how
by retrieving the delay parameters, we can symmetrically sample and reconstruct a given
FRI signal. It will be shown that, by registering the delay parameters from the relevant
features of the image samples, it is possible to synchronize the different channels exactly so
that perfect reconstruction of the original input signal and its delayed versions is achieved.

4.2 Multichannel Sampling of 1-D Diracs

As mentioned before, we can truly distribute the acquisition of FRI signals with kernels
reproducing exponentials. This is because, exponential splines can offer different kernels
with the same order due to the arbitrary choice of the parameters α0 and λ in αm =
α0 + mλ. We will briefly explain Baboulaz’s result [11] for 1-D Diracs and in the next
sections we will show how we can extend his method to the two dimensional case.

Assume that we have two signals consisting of K Diracs, of which, one is a shifted
version of the other, that is x1(t) = x0(t − ∆x) where ∆x is the unknown shift between
the two signals. The exponential moments for both sensors are given by:

τ0
m =

∫ ∞

−∞
x0(t)eα

0
mtdt (4.1)

τ1
m =

∫ ∞

−∞
x1(t)eα

1
mtdt, (4.2)

where superscripts 0 and 1 on the exponential moments τ0
m and τ1

m represent the reference
sensor and the adjacent sensor respectively. Now assume that one parameter is common
between the sets α0 and α1, for example the last parameter of the first sensor and the first
parameter of the second sensor, that is: α0

P = α1
0 = α. The corresponding moments are:

τ0
P =

∫ ∞

−∞
x0(t)eαtdt (4.3)

τ1
0 =

∫ ∞

−∞
x1(t)eαtdt =

∫ ∞

−∞
x0(t−∆x)eαtdt, (4.4)

which with simple rearrangements, leads to:

τ1
0 = eα∆x.τ0

P . (4.5)
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By taking logarithms on both sides we can easily find the shift parameter ∆x as follows:

ln
(
τ1
0

τ0
P

)
= α.∆x. (4.6)

From the estimated shift parameter ∆x we can now easily find the higher moments of the
first sensor from the second sensor and also the lower moments of the second sensor from the
first sensor. To make things clearer, let us assume that we have K = 2 Diracs for our first
signal and a shifted version of it for the second signal. From [2] we know that for a given K
Diracs as the input signal, we need the E-spline order to be at least 2K − 1, which means
the sampling kernel needs to produce at least 2K exponentials. Assuming that K = 2,
then the sampling kernel needs to produce at least 4 exponentials with α = (α0, α1, α2, α3).
Let us assume that P = α2 = α is the common parameter set between the two sensors.
Moreover, with this arrangement, the α0 set for the first sensor will be α0 = (α0, α1, α2)
and for the second sensor: α1 = (α2, α3). As we have a common parameter between the
two sets, the shift ∆x can be calculated, as explained before. The exponential moments
from the first sensor are now (τ0

0 , τ
0
1 , τ

0
2 ) and its higher moments can be obtained from the

moments of the second sensor, as follows: (τ0
2 , τ

0
3 ) = (τ1

0 .e
−α2∆x, τ1

1 .e
−α3∆x). Therefore

we have all the 2K moments in order to reconstruct the signal from the first sensor. The
same rule can be applied to the second sensor in order to obtain its lower moments from
the moments of the first sensor. From [2] we know that a stream of Diracs is uniquely
determined from the samples if there are at most K Diracs in an interval size of 2KLT
where L is the support of the sampling kernel. Since the support of the sampling kernels is
reduced in the multichannel case, then for a fixed T we can achieve a better performance
for the multichannel case.

4.3 Multichannel Sampling of Multidimensional FRI Signals

A model of a 2-D multichannel system is shown in Figure 4.2 where the bank of E-spline
filters ϕ1(x, y), ϕ2(x, y), . . . , ϕN−1(x, y) receive different delayed versions of the input 2-D
signal g0(x, y) and the delays are denoted by T1, T2, . . . , TN−1. The 2-D model is just an

Figure 4.2: 2-D multichannel sampling scenario

extension to the 1-D case and the only difference is that the delay parameters could be a
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combination of more complicated transforms such as scaling, rotation and reflection.
Let us begin by considering the signal g0(x, y) as the reference signal, and g1(x, y) as

its delayed version where g1(x, y) = g0(x − x0, y − y0), which is just a translated version
of the reference signal. Bearing in mind the formula given in (2.46) for the exponential
moments, assume that one parameter is common between the sets α0 and α1, for example
the first and the last parameter of these two sets, i.e. α0

P = α1
0 = α. Leaving βn intact,

the exponential moments of the two sampled signals at the corresponding parameters are:

τ0
P,n =

∫ ∞

−∞

∫ ∞

−∞
g(x, y) eαxeβny dx dy (4.7)

τ1
0,n =

∫ ∞

−∞

∫ ∞

−∞
g(x− x0, y − y0) eαxeβny dx dy, (4.8)

which with simple rearranging leads to:

τ1
0,n

τ0
P,n

= eαx0 eβny0 . (4.9)

By taking logarithms on both sides we will obtain a system of simple linear equations
which we can solve for x0 and y0 using matrix equations:

ln

(
τ1
0,n

τ0
P,n

)
= αx0 + βny0, (4.10)

and using matrix equations we can find the shift parameters x0 and y0, that is:

B†A =

(
x0

y0

)
,

where

A =

ln(
τ1
0,0

τ0
P,0

)

ln(
τ1
0,1

τ0
P,1

)

 and B =

(
α β0

α β1

)
.

Therefore if one of the sets of the parameters are common between the two acquisition
devices then not only we can exactly retrieve the shifts x0 and y0 but also we can easily
produce the rest of the exponential moments of both signals all together. This means that,
by estimating the shifts, we can produce the higher order moments of the reference signal
from the lower order moments of its translated version and vice versa. Finally, by retrieving
all the exponential moments, we can use the corresponding reconstruction algorithms to
perfectly reconstruct the input 2-D signal. It is important to mention that, in the case of
having more than two sensors, we can just set one of the parameters of βn to be common
between the two sets.

As an example for the 2-D Diracs case, assume that we have a multichannel system with
4 E-spline filters, where the reference signal consists of 3 Diracs in a frame size of 256×256,
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and the delayed signals are a 2-D translated version of the reference signal. If we want to
reconstruct each signal independently, as was shown in Chapter III, a minimum 2-D spline
order of [M,N ] = [2K−1, 2K−1] = [5, 5] is required for each signal. That is, all the expo-
nential moments τ i0:5,0:5 are required for an independent perfect reconstruction, but since
we can sample the signals symmetrically, the spline orders needed for each image can be
reduced. Figure 4.3 illustrates an example of this scenario where α2 and β2 are chosen to be
common between the sets: (α0, α1) and (β0, β1). Thus, the following exponential moments
are obtained from all the 4 filters: τ0

0:2,0:2, τ1
2:5,0:2, τ2

0:2,2:5 and τ3
2:5,2:5. In the figure, the

reference image and its translated versions, their 16×16 under-sampled images with shifts
[x0, y0] : [0, 0]; [50, 10]; [50, 50]; [20, 50] and spline orders [M,N ] = [2, 2]; [3, 2]; [2, 3]; [3, 3],
and the reconstructed reference image are all shown. Other images from other sensors
could also be reconstructed but only the reconstructed reference image is shown in the
figure.
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(a) (b) (c) (d)

(e)

(f)

Figure 4.3: Symmetric multichannel sampling of 2-D Diracs using E-splines
(a)(b)(c) & (d) The reference image with K = 3 Diracs in a frame size of
256× 256 (most-left) and its translated versions (e) The 16× 16 samples of
the reference image (top-left) and the 16 x 16 samples of all other translated
images with shifts [x0,y0] = [50,10]; [70,70]; [20,70] (f) The reconstructed image,
the crosses are the retrieved positions of the Diracs. [Not to scale]

Multichannel sampling of bilevel polygons with only simple translation as the delay
parameter, is no different to the case of multichannel sampling of 2-D Diracs. As in the
previous case, by setting the common parameters between the α sets of the sensors and
also the β sets (in the case of having more than two sensors), the shift parameters x0 and
y0 can be found by taking logarithms on the exponential moments of both signals. The
only difference, which was explained in Chapter III, is the reconstruction algorithm used
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for recovering the vertices of the polygon, which in turn changes the minimum spline order
required to achieve perfect reconstruction.

As an example, assume again that we have a multichannel system with 4 E-spline filters,
where the reference signal is a bilevel triangle in a frame size of 256× 256, and the delayed
signals are a 2-D translated versions of the reference image. If we want to reconstruct each
image independently, as was shown in Chapter III, a 2-D spline order of [M,N ] = [8, 8] is
required for each image, that is all the exponential moments τ i0:8,0:8 are required, but since
we can sample the images symmetrically, the spline order needed for each image can be
reduced. Figure 4.4 illustrates an example of this scenario where α3 and β3 are chosen to
be common between the sets: (α0, α1) and (β0, β1). Moreover, the following exponential
moments are obtained from all the 4 filters: τ0

0:3,0:3, τ1
3:8,0:3, τ2

0:3,3:8 and τ3
3:8,3:8. In the figure,

the reference image and its translated versions, its 16 × 16 under-sampled image with an
spline order of [M,N ] = [3, 3], the 16× 16 samples of all the other under-sampled images
with shifts [x0, y0] : [50, 10]; [70, 70]; [20, 70] and spline orders [M,N ] = [5, 3]; [3, 5]; [5, 5]
and the reconstructed reference image are all shown.

38



(a) (b) (c) (d)

(e)

(f)

Figure 4.4: Symmetric multichannel sampling of bilevel polygons using E-splines
(a)(b)(c) & (d) The reference bilevel polygon image with K = 3 in a frame size
of 256× 256 (most-left) and its translated versions (e) The 16× 16 samples of
the reference image (most-left) and the 16× 16 samples of all other translated
images with shifts [x0,y0] = [50,10]; [70,70]; [20,70] (c) The reconstructed ver-
tices with 3 + 1 = 4 back-projections, the crosses are the actual vertices of the
polygon. [Not to scale]
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Chapter 5

Future Research

There are many interesting while challenging open problems to look at in our research area
and our aim in this chapter is to give a brief description on what we are going to do next
and how our future research is planned:

5.1 Sampling Bilevel Polygons

We showed that by using the projection-slice theorem, we can recover the vertices of bilevel
polygons using exponential splines. Since for perfect reconstruction N + 1 projections are
needed for an N -sided bilevel polygon, the order of E-spline used is O(N2) which is quite
redundant when compared to the degrees of freedom of the signal O(2N). One idea would
be to try to apply a modified version of the ACMP algorithm to the Fourier transform
representation of bilevel polygons and try to solve for the locations of the vertices of the
polygon without the need for Radon projections. This is open problem in our research and
we will focus mainly on this issue in the next coming months.

5.2 Sampling Under Noisy Conditions

So far, in our research, we have assumed that the measurements are noiseless. In practice
this is never true, and we want to see how our sampling schemes perform under noisy
channels and also to see if, by increasing the spline order, our reconstruction algorithm
would result in better estimations than the case with minimum spline order needed. Our
aim is to derive Cramér-Rao (C-R) bounds under noisy conditions, assuming that the noise
is white Gaussian with zero mean. We are planning to focus on the topic over next coming
year as we also want to look at the multichannel sampling scenario under noisy conditions.

5.3 Multichannel Sampling of Bilevel Polygons

In Chapter 5, we illustrated how we can sample bilevel polygons in a multichannel scenario,
with the delay parameters being just a simple translation. In practice, this is usually
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not the case, and we want to look at the cases of more complicated delay parameters,
such as translation, rotation and scaling. Under our current results for sampling bilevel
polygons, we need to use Radon projections in order to estimate the more complicated delay
parameters, as, unlike the case of having simple translation only, applying rotation and/or
scaling for example, would result in a non-linear relationship between the exponential
moments of the signals from the different sensors. Therefore, we can not easily estimate
the delay parameters like the way it was done for the simple translation case. This is an
open problem in our research and we have come up with some ideas but they are at their
early stages of our research. Ideas such as:

a) The projection angle φ of a rotated signal with respect to its reference image with
an angle θ, is the same projection on the reference image at the angle φ + θ, therefore if
the rotation parameter in known then we can easily separate the N +1 projections needed
between the different sensors.

b) The scaling parameter, independent of all other mentioned parameters, could easily
be found by comparing the zero-th order exponential moments of both signals, as the
zero-th order moment equals to the area of the bilevel polygon.

Using these ideas, one has to realize that if all the unknown delay parameters are known
and calculated, then the N + 1 projections needed could easily be separated between the
different sensors, in order to sample and perfectly reconstruct the reference image (or other
images) in a symmetric manner. Therefore the main problem is to see how we can estimate
the delay parameters from either the exponential moments or from the Radon projections.
As this is in our main research plan, we will focus mainly on this problem over the next
coming year.

5.4 Applications

As we mentioned before, multichannel sampling of signals is used in many modern appli-
cations and our aim is to see if E-spline sampling kernels have the potential to be used in
such applications. By deriving C-R bounds under noisy conditions and introducing sam-
pling theorems for more complicated transformation parameters, we will be able to utilize
our results for E-spline sampling kernels in applications such as image super-resolution
[23, 24, 25] and interleaved A/D converters. That is, instead of using one, expensive acqui-
sition device working at very high sampling rates, we can synchronize multiple but cheap
acquisition devices working at lower sampling rates and still achieve the same performance.
We are planning to look at the application side of our research starting from the third year.
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Appendix

Subspace Harmonic Retrieval Algorithms on Different Data
Models

In Chapter III we showed that, with the standard data model for harmonic retrieval al-
gorithms we can easily find the poles and also the amplitudes from the signal data points
using the ACMP method. The question here is that, if we change the data model would the
ACMP method still work to retrieve the poles and the amplitudes? First, we will consider
the one dimensional case:

The One Dimensional Case

Let us assume that our data model for the one dimensional case is as follows:

In =
D∑
i=1

(αn+ β) aiϕni , (5.1)

where the parameters ai, ϕi, α and β are unknown. With this data model, the 1-D
subspace harmonic approach, explained previously, would not be able to retrieve the poles
and the amplitudes. Therefore we need to modify the method in order for it to work
with the mentioned data model. We propose the following modifications: As before, the
data points are arranged into Hankel matrix of size L ×M but this time, because of the
parameters n in (αn + β), we must have L ≥ 2D + 1 and M ≥ 2D. The Hankel matrix
H can be decomposed as H = S.A.T T where matrices S, T and A have the following
structures respectively:

S =


β β ... β ϕ1 ϕ2 ... ϕD

(α+β)ϕ1 (α+β)ϕ2 ... (α+β)ϕD ϕ2
1 ϕ2

2 ... ϕ2
D

(2α+β)ϕ2
1 (2α+β)ϕ2

2 ... (2α+β)ϕ2
D ϕ3

1 ϕ3
2 ... ϕ3

D

...
... ...

...
...

... ...
...

((L−1)α+β)ϕL−1
1 ((L−1)α+β)ϕL−1

2 ... ((L−1)α+β)ϕL−1
D ϕL

1 ϕL
2 ... ϕL

D



T =


1 1 ... 1 0 0 ... 0
ϕ1 ϕ2 ... ϕD α α ... α
ϕ2

1 ϕ2
2 ... ϕ2

D 2αϕ1 2αϕ2 ... 2αϕD

...
... ...

...
...

... ...
...

ϕM−1
1 ϕM−1

2 ... ϕM−1
D (M−1)αϕM−2

1 (M−1)αϕM−2
2 ... (M−1)αϕM−2

D


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A =


a1 0 ... 0 ... ... 0
...

. . .
...

...
...

...
...

0 ... 0 aD 0 ... 0
0 ... 0 0 a1 ... 0
...

...
...

...
...

. . .
...

0 ... ... ... ... 0 aD

 .

As can be seen, the matrix S has a generalized Vandermonde structure and when compared
to the previous data models, a new block of Vandermonde matrix is added to the matrix.
The matrix S therefore satisfies the shift-invariant property, that is: S = SΦ where

Φ =


ϕ1 0 ... 0 ... ... 0 0

...
. . .

...
...

...
...

...
...

0 ... 0 ϕD 0 ... 0 0
α ... 0 0 ϕ1 ... 0 0
0 α ... 0 0 ϕ2 ... 0

...
...

. . .
...

...
. . .

...
...

0 ... ... α ... 0 0 ϕD

 .

Like before, we take the SVD of the Hankel matrix H and truncate that to H2D:

H2D = U2D × Σ2D × V2D. (5.2)

U2D and S span the same column space and it follows that: U2D = S.Q, where Q is a
non-singular matrix. The poles ϕi can be found by taking the EVD of the matrix pencil,
constructed as before, and this gives us:

eig(U2D
−1U2D) = Φ. (5.3)

Since EVD is applied to the matrix pencil, only the diagonal elements of the matrix Φ are
obtained which contains the poles ϕi with multiplicity two. Thus, we have shown with the
data model defined above we can still can use the 1-D subspace harmonic approach, but a
modified version of it.

Now let us assume that our data model is as follows:

In =
D∑
i=1

(αn2 + βn+ γ) aiϕni , (5.4)

where the polynomial order of n in (αn2 + βn+ γ) is p = 2 and the parameters ai, ϕi, α,
β and γ are unknown. Like before, the data points are arranged into a Hankel matrix of
dimension L×M , but this time, since the polynomial order of n is p = 2, we must have:
L ≥ 3D+ 1 and M ≥ 3D. The matrix H can now be decomposed as: H = S.A.T T where
matrices S, T and A have the following structures respectively:

S =


γ ... γ (α+β)ϕ1 ... (α+β)ϕD ϕ2

1 ... ϕ2
D

(α+β+γ)ϕ1 ... (α+β+γ)ϕD (3α+β)ϕ2
1 ... (3α+β)ϕ2

D ϕ3
1 ... ϕ3

D

(4α+2β+γ)ϕ2
1 ... (4α+2β+γ)ϕ2

D (5α+β)ϕ3
1 ... (5α+β)ϕ3

D ϕ4
1 ... ϕ4

D

... ...
...

... ...
...

... ...
...

((L−1)2α+(L−1)β+γ)ϕL−1
1 ... ((L−1)2α+(L−1)β+γ)ϕL−1

D ((2L−1)α+β)ϕL
1 ... ((2L−1)α+β)ϕL

D ϕL+1
1 ... ϕL+1

D



43



T =


1 ... 1 0 ... 0 0 ... 0
ϕ1 ... ϕD 1 ... 1 0 ... 0
ϕ2

1 ... ϕ2
D 2ϕ1 ... 2ϕD 2α ... 2α

... ...
...

... ...
...

... ...
...

ϕM−1
1 ... ϕM−1

D (M−1)ϕM−2
1 ... (M−1)ϕM−2

D ((M−1)2−(M−1))α ϕM−3
1 ... ((M−1)2−(M−1))α ϕM−3

D



A =



a1 0 ... ... ... ... ... ... 0
...

. . .
...

...
...

...
...

...
...

0 ... aD 0 ... ... ... ... 0
0 ... 0 a1 ... ... ... ... 0
...

...
...

...
. . .

...
...

...
...

0 ... ... ... ... aD 0 ... 0
0 ... ... ... ... 0 a1 ... 0
...

...
...

...
. . .

...
...

...
...

0 ... ... ... ... ... ... 0 aD


.

As the matrix S has a generalized Vandermonde structure, it satisfies the shift-invariant
property, therefore S = SΦ where

Φ =



ϕ1 0 ... ... ... ... ... ... 0

...
. . .

...
...

...
...

...
...

...
0 ... ϕD 0 ... ... ... ... 0
1 0 ... ϕ1 0 ... ... ... 0

...
. . .

...
...

. . .
...

...
...

...
0 ... 1 0 ... ϕD 0 ... 0
0 ... 0 2α ... 0 ϕ1 ... 0

...
...

...
...

. . .
...

...
. . .

...
0 ... ... ... ... 2α ... 0 ϕD


.

As before, we take the SVD of the Hankel matrix H and truncate it to H3D:

H3D = U3D × Σ3D × V3D. (5.5)

U3D and S span the same column space and it follows that: U3D = S.Q, where Q is a non-
singular matrix. Now we can construct the matrix pencil from above, and then take EVD
to find the poles Φ: eig(U3D

−1U3D) = Φ. Since we are taking the EVD, only the diagonal
elements of the matrix Φ are obtained which contains the poles ϕi with multiplicity three.
For higher polynomial orders of n, all we need to do is to increase the dimension of the
Hankel matrix H accordingly, that is, we must have: L ≥ (p+1)D+1 and M ≥ (p+1)D,
where p is the maximum degree of the discrete polynomial np.

The Two Dimensional Case - The Modified ACMP Approach

For the two dimensional case, let us start by assuming that our general data model is as
follows:

Im,n =
D∑
i=1

(αm+ γn+ λ) aiϕmi ψ
n
i , (5.6)

where the parameters ai, ϕi, ϕi, α, λ and γ are unknown. The polynomial order of n
and m are q = 1 and p = 1 respectively and both are independent of each other. If the
size of the matrix Im,n is M × N where M ≥ 2D + 1 and N ≥ 2D + 1 then Im,n can be
decomposed as: Im,n = S.A′.T T where matrices S, T and A have the following structures
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respectively:

S =


λ ... λ 1 ... 1

(α+λ)ϕ1 ... (α+λ)ϕD ϕ1 ... ϕD

(2α+λ)ϕ2
1 ... (2α+λ)ϕ2

D ϕ2
1 ... ϕ2

D

... ...
...

... ...
...

((M−1)α+λ)ϕM−1
1 ... ((M−1)α+λ)ϕM−1

D ϕM−1
1 ... ϕM−1

D



T =


1 ... 1 0 ... 0
ψ1 ... ψD γψ1 ... γψD

ψ2
1 ... ψ2

D 2γψ2
1 ... 2γψ2

D

... ...
...

... ...
...

ψN−1
1 ... ψN−1

D (N−1)γψN−1
1 ... (N−1)γψN−1

D



A =


a1 0 ... 0 ... ... 0
...

. . .
...

...
...

...
...

0 ... 0 aD 0 ... 0
0 ... 0 0 a1 ... 0
...

...
...

...
...

. . .
...

0 ... ... ... ... 0 aD

 .

The matrices S and T have both generalized Vandermonde structures and the matrix A is
a diagonal matrix containing all the amplitudes. Therefore, the matrices S and T satisfy
the shift-invariant property, that is: S = SΦ, T = TΨ where

Φ =


ϕ1 ... 0 0 ... 0

...
. . .

...
... ...

...
0 ... ϕD 0 ... 0
αϕ1 ... 0 ϕ1 ... 0

...
. . .

...
...

. . .
...

0 ... αϕD 0 ... ϕD



Ψ =


ψ1 ... 0 γψ1 ... 0

...
. . .

...
... ...

...
0 ... ψD 0 ... γψD
0 ... 0 ψ1 ... 0

...
. . .

...
...

. . .
...

0 ... 0 0 ... ψD

 .

Now we can simply apply the ACMP algorithm to obtain the poles ϕi and ψi, except that
the size of the enhanced matrix must be (D + 1)(D + 1) × (D + 1)(D + 1) instead of
D(D + 1)×D(D + 1).

Now let us consider the data model:

Im,n =
D∑
i=1

(αn+ γm+ βmn+ λ) aiϕmi ψ
n
i (5.7)

where the joint polynomial order of m and n equals to 2, and the parameters ai, ϕi, φi,
α, β, λ and γ are unknown. The case with this data model is quite different. We have
managed to apply subspace retrieval approaches to solve for ϕi and ψi separately, but we
still have not managed to apply a modified version of the pairing and restoration techniques
used in the ACMP method to this data model. It is an open problem and also in our future
research work.
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